"Inequalities Concerning Polar Derivative of Polynomials"

Roshan Lal Department of Mathematics Govt. Degree College Chaubattakhal (Pauri Garhwal) Uttrakhand

<u>Abstract</u>: Let p(z) be a polynomial of degree n and let α be any real or complex number, then the polar derivative of p(z) denoted by D_{α} p(z), is defined as

$$D_{\alpha} p(z) = n p(z) + (\alpha - z) p'(z)$$

The polynomial $D_{\alpha} p(z)$ is of degree at most n-1 and it generalizes the ordinary derivative p'(z) of p(z) in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha} p(z)}{\alpha} = p'(z)$$

In this paper we prove interesting results for the polar derivative of a polynomial which not only improve upon some earlier known results in the same area but also improve upon a result on ordinary derivative for polynomials in particular case.

Key-Words: Polynomials; Polar derivative; Inequalities; Zeros.

AMS Subject Classification: 30A10, 30C10

AJMI

1. Introduction and statement of results:

Let p(z) be a polynomial of degree n, then according to a famous result known as Bernstein's inequality (for reference see [2]), we have

Theorem A. If p(z) is a polynomial of degree n, then

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |p(z)|.$$
(1.1)

The result is best possible and equality holds for $p(z) = \lambda z^n$, $\lambda \neq 0$ being a complex number.

For the class of polynomials having no zeros in |z| < 1, the following result was conjectured by Erd \ddot{o} s and later verified by Lax [5].

Theorem B. If p(z) is a polynomial of degree *n* having no zeros in |z| < 1, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)| .$$
(1.2)

The result is best possible and equality in (1.2) occurs for $p(z) = \lambda + \mu z^n$, where $|\lambda| = |\mu|$.

As a generalization of Theorem B, Malik [6] proved the following

Theorem C. If p(z) is a polynomial of degree n having no zeros in |z| < k, $k \ge 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \max_{|z|=1} |p(z)|.$$
(1.3)

The result is sharp and extremal polynomial is $p(z) = (z+k)^n$.

For the class of polynomials not vanishing in the disk $|z| < k, k \ge 1$, Aziz [1] extended Theorem C to the polar derivative and proved the following result.

Theorem D. If p(z) is a polynomial of degree n, having no zeros in the disk $|z| < k, k \ge 1$, then for every real or complex number β with $|\beta| \ge 1$,

$$\max_{|z|=1} \left| D_{\beta} p(z) \right| \le \frac{n(k+|\beta|)}{1+k} \max_{|z|=1} \left| p(z) \right|.$$
(1.4)

The result is sharp and equality in (1.4) holds for the polynomial $p(z) = (z+k)^n$ with real $\beta \ge 1$.

Recently, Govil and Mc Tume [3], for the class of polynomials having all the zeros in the region $|z| \le k, k \le 1$, proved the following

Theorem E. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n, having all its zeros in $|z| \le k, k \le 1$, then for every real or complex number α with $|\alpha| \ge L$, $L = \frac{n k^2 |a_n| + |a_{n-1}|}{n|a_n| + |a_{n-1}|}$

$$\max_{|z|=1} |D_{\alpha} p(z)| \ge \frac{n(|\alpha| - L)}{1 + k} \max_{|z|=1} |p(z)|.$$
(1.5)

In this paper we prove the following result which improves upon Theorem E.

Theorem 1. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| < k, k \le 1$, then for every real or complex number α with $|\alpha| \ge 1 + k + L$, where $L = \frac{n k^2 |a_n| + |a_{n-1}|}{n|a_n| + |a_{n-1}|}$, then for |z| = 1,

$$\begin{aligned} \max_{|z|=1} |D_{\alpha} p(z)| &\geq \frac{n(|\alpha| - L)}{(1+k)} \max_{|z|=1} |p(z)| \\ &+ n \left(\frac{|\alpha| - (1+k+L)}{(1+k)} \right) \min_{|z|=k} |p(z)|. \end{aligned}$$
(1.6)

Next we prove a result that, in particular case, gives an improvement of Theorem 1. Here we assumed that some zeros of p(z) are located at the origin. More precisely, we prove

Theorem 2. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \le k, k \le 1$

, with s-fold zeros at origin, then for every real or complex number lpha with $|lpha|\geq L$, we have

$$\max_{|z|=1} |D_{\alpha} p(z)| \ge \frac{(|\alpha| - L)(n + sk)}{(1+k)} \max_{|z|=1} |p(z)| + \left\{ n + \frac{(n-s)(|\alpha| - L)}{k^{s}(1+k)} \right\} \min_{|z|=k} |p(z)|$$
(1.7)

Where L is same as defined in Theorem 1.

Remark 3. As earlier said for s = 0, Theorem 2 gives an improvement of Theorem 1. To see this, firstly we will show $k \ge L$. If z_i , $1 \le i \le n$, are the zeros of p(z), then $|z_i| \le k$, $1 \le i \le n$ and

$$\left|\frac{a_{n-1}}{a_n}\right| = \left|z_1 + z_2 + \dots + z_n\right| \le n k$$

$$\left|a_{n-1}\right| \le n \left|a_n\right| k \tag{1.8}$$

Since $k \leq 1$, inequality (1.8) gives

$$(1-k)|a_{n-1}| \le (1-k)n|a_n|k$$
.

Vol.08 Issue-02, (July - December, 2016) ISSN: 2394-9309 Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 4.866)

Which is equivalent to
$$L$$

ent to
$$L = \frac{nk^2 |a_n| + |a_{n-1}|}{n|a_n| + |a_{n-1}|} \le k$$

or $k \ge L$. (1.9)

In view of $k \ge L$, we see that Theorem 2 (for s=0) gives an improvement of Theorem 1. To see this

$$\begin{aligned} \frac{n(|\alpha| - L)}{1 + k} \|p\| + n \left(\frac{1 + k + |\alpha| - L}{1 + k}\right) m &\geq \frac{n(|\alpha| - L)}{(1 + k)} \|p\| \\ &+ n \left\{\frac{|\alpha| - (1 + k + L)}{1 + k}\right\} m\end{aligned}$$

This is equivalent to

$$0 \ge -2(1+k)m$$

or
$$2(1+k)m \ge 0$$

which is always true. Hence the Remark 3.4 is true. Also we note that Theorem 3.3 is valid for $|\alpha| \ge 1 + k + L$. While Theorem 3.4 is valid for $|\alpha| \ge L$, which is a bigger region.

2. Lemmas:

For the proof of the theorems, we need the following lemmas.

Lemma 2.1. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree *n*, having all its zeros in $|z| \le k, k \le 1$, then on |z| = 1

$$L|p'(z)| \ge |q'(z)|,$$
 (2.1)

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com where

$$L = \frac{n|a_n|k^2 + |a_{n-1}|}{n|a_n| + |a_{n-1}|}$$

The above result is due to Govil and Mc Tume [3].

We improve upon Lemma 2.1 as follows

Lemma 2.2. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree *n*, having all its zeros in $|z| \le k, k \le 1$, then on |z| = 1, we have

$$L|p'(z)| \ge |q'(z)| + mn,$$
 (2.2)

where

$$m = \min_{|z|=k} \left| p(z) \right|$$

and L is same as defined in Lemma 2.1.

Proof of Lemma 2.2. Since p(z) has all its zeros in $|z| \le k, k \le 1$ the polynomial $F(z) = p(z) + \lambda m, |\lambda| < 1, m = \min_{|z|=k} |p(z)|$, will also have all its zeros in the same domain i.e. $|z| \le k, k \le 1$. Let

$$Q(z) = z^{n} \overline{F\left(\frac{1}{z}\right)}$$
$$= z^{n} \overline{p\left(\frac{1}{z}\right)} + \lambda m$$
$$= z^{n} \overline{p\left(\frac{1}{z}\right)} + z^{n} \overline{\lambda} m$$
$$Q(z) = q(z) + z^{n} \overline{\lambda} m.$$

Applying Lemma 2.1 for F(z), we have

$$L|F'(z)| \ge |Q'(z)| \quad \text{for} \quad |z| = 1$$

or

$$L|p'(z)| \ge \left|q'(z) + n z^{n-1} \overline{\lambda} m\right|$$
(2.3)

Now suitably choosing the argument of λ in such a way that R. H. S. of inequality (2.3) on |z|=1, becomes

$$\left|q'(z) + n z^{n-1} \overline{\lambda} m\right| = \left|q'(z)\right| + n \left|\lambda\right| m$$

Hence inequality (2.3) becomes

$$L|p'(z)| \ge |q'(z)| + n|\lambda|m$$

Finally, letting $|\lambda| \rightarrow 1$, the proof of Lemma 2.2 is completed.

Lemma 2.3. If all the zeros of a polynomial $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ of degree *n*, lie in $|z| \le k, k \le 1$, with *s*-fold zeros at origin, then

$$\max_{|z|=1} p'(z) \ge \frac{(n+sk)}{1+k} \max_{|z|=1} p(z) + \frac{(n-s)}{k^s (1+k)} \min_{|z|=k} |p(z)|.$$
(2.4)

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics http://www.ijmr.net.in email id- irjmss@gmail.com The above result is due to Jain [4, Corollary 1.7].

3. Proof of the Theorems:

Proof of Theorem 1: Since p(z) has all of its zeros in |z| < k, $k \le 1$, by Rouche's Theorem, the polynomial $p(z) + \lambda m$, where $|\lambda| < 1$ and $m = \min_{|z|=k} |p(z)|$ also has all its zeros in same domain i.e. |z| < k, $k \le 1$. Therefore applying inequality (1.5) to $p(z) + \lambda m$, we have,

$$\max_{|z|=1} \left| D_{\alpha} \left\{ p(z) + \lambda m \right\} \right| \geq \frac{n(|\alpha| - L)}{1 + k} \max_{|z|=1} \left| p(z) + \lambda m \right|$$

or

$$\max_{|z|=1} \left| D_{\alpha} p(z) + \lambda mn \right| \ge \frac{n(|\alpha| - L)}{1 + k} \max_{|z|=1} \left| p(z) + \lambda m \right|$$

$$\max_{|z|=1} \left| D_{\alpha} p(z) \right| + \left| \lambda \right| mn \ge \frac{n(|\alpha| - L)}{1 + k} \max_{|z|=1} \left| p(z) + \lambda m \right|$$
(2.1)

Now choosing the argument of λ suitably such that R.H.S. of inequality (2.1) becomes

$$\max_{|z|=1} |p(z) + \lambda m| = \max_{|z|=1} |p(z)| + |\lambda|m$$
(2.2)

Combining equality (2.1) and inequality (2.2), we get

$$\max_{|z|^1} \left| D_{\alpha} p(z) \right| + \left| \lambda \right| mn \ge \frac{n(|\alpha| - L)}{1 + k} \left\{ \max_{|z| = 1} \left| p(z) \right| + \left| \lambda \right| m \right\}$$

or

$$\begin{split} \max_{|z|^1} \left| D_{\alpha} p(z) \right| &\geq \frac{n(|\alpha| - L)}{1 + k} \left\{ \max_{|z|=1} \left| p(z) \right| \right\} + |\lambda| mn \left\{ \frac{|\alpha| - L}{1 + k} - 1 \right\} \\ &= \frac{n(|\alpha| - L)}{1 + k} \max_{|z|=1} \left| p(z) \right| + |\lambda| n \left(\frac{|\alpha| - (1 + k + L)}{1 + k} \right) \min_{|z|=k} \left| p(z) \right|. \end{split}$$

Finally letting $|\lambda| \rightarrow 1$, we get the desired result.

Proof of Theorem 2: By definition

$$D_{\alpha} p(z) = np(z) + (\alpha - z)p'(z)$$

which implies

$$|D_{\alpha} p(z)| = |\alpha p'(z) + np(z) - zp'(z)|$$

$$\geq |\alpha||p'(z)| - |np(z) - zp'(z)|. \qquad (3.3)$$

Let
$$q(z) \equiv z^n \overline{p\left(\frac{1}{z}\right)}$$
, then on $|z| = 1$,
 $|np(z) - zp'(z)| = |q'(z)|$. (3.4)

Combining inequalities (3.3) and (3.4), we get

$$|D_{\alpha}p(z)| \ge |\alpha||p'(z)| - |q'(z)|$$
 on $|z| = 1$.(3.5)

Now using Lemma 2.2 in (3.5), we get

$$|D_{\alpha} p(z)| \ge |\alpha| |p'(z)| - \left\{ L |q'(z)| - mn \right\}$$

= $(|\alpha| - L) |p'(z)| + mn$ (3.6)

where *m* is defined as in Lemma 2.2.

Now for polynomial having all its zeros in $|z| < k, k \le 1$, with s-fold zeros at origin, applying Lemma 2.3 in (3.6), we get

$$|D_{\alpha}p(z)| \ge (|\alpha| - L) \left\{ \frac{(n+sk)}{1+k} \max_{|z|=1} |p(z)| + \frac{(n-s)}{k^{s}(1+k)} m \right\} + mn.$$

Equivalently

$$\max_{z|=1} |D_{\alpha} p(z)| \ge \frac{(|\alpha| - L)(n + sk)}{(1+k)} \max_{\substack{|z|=1}} |p(z)| + \left\{ n + \frac{(n-s)(|\alpha| - L)}{k^{s}(1+k)} \right\} \min_{\substack{|z|=k}} |p(z)|.$$

Thus the theorem is proved completely.

Acknowledgement: The author is highly thankful to anonymous referee for his

valuable suggestions.

References:

- 1. Aziz A., *Inequalities for the polar derivative of a polynomial*, J. Approx. Theory, 55(1988) 183-193.
- 2. S. Bernstein, *Lecons Sur Les Proprietes extrremales et la meillure approximation des functions analytiques d'une functions reele ,* Paris, 1926.
- 3. N.K.Govil, and Mc Tume, *Some generalisations involving the polar derivative for an inequality of Paul Turan,* Acta. Math. Hungarica, 104 (1-2) (2004), 115-126.
- 4. V.K.Jain, On polynomials having zeros in closed closed exterior or interior of a circle, Indian J. Pure Appl. Math., 30(1999) 153-159.
- 5. P.D. Lax, *Proof of a conjecture of P. Erd ö s on the derivative of a polynomial,* Bull.nAmer. Math. Soc., 50(1944) 509-513.
- 6. M.A Malik., On the derivative of polynomial, J. London Math. Soc., 1(1969) 57-60.